Hai-Liang Zhu, Ye-Xiang Tong and Xiao-Ming Chen\*

School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, China. E-mail: cescxm@zsu.edu.cn

Received 29th June 2000, Accepted 14th September 2000 First published as an Advance Article on the web 27th October 2000

Five silver(I) complexes of Schiff bases,  $[Ag_2L_2][ClO_4]_2$  1,  $[Ag_2L_2][PF_6]_2 \cdot H_2O$  2,  $[Ag_2L_2][NO_3]_2$  3,  $\frac{1}{6}[(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dnb)-(AgL')(dn$  $(H_2O)_{0.25}$ ] (dnb = 3,5-dinitrobenzoate) 4 and  $\frac{1}{\infty}$ [(AgL')(NO<sub>3</sub>)] 5 were synthesized, where L and L' are derived from the [1 + 2] condensation of 2-(aminoethylamino)ethanol with isophthalaldehyde or terephthalaldehyde. Complexes 1, 2, 4 and 5 have been structurally characterised by X-ray crystallography, which shows that the cations in 1 and 2 have similar double helical structures, and 4 has a single-stranded helical structure. However, complex 5 exhibits a onedimensional staircase-like structure. Each Ag atom in 1, 2 and 4 adopts a highly distorted tetrahedral geometry, while that in 5 features a T-shaped geometry. In solution, 1-3 have virtually identical <sup>1</sup>H NMR spectra, similar FAB mass spectra and electrochemical properties.

#### Introduction

Double-helix formation of nucleic acids and self-assembly of viral protein coats are significant biologically. Since the early pioneering work of Lehn on double-helical oligopyridyl copper(I) complexes,<sup>2</sup> there has been enormous interest in helical complexes. Self-assembly is a process by which organised supramolecular structures are spontaneously generated from their component molecular parts in high yield and specificity.<sup>3</sup> The approach involves the design of building blocks which contain metal-binding domains together with functionality required for the desired product. In recent years a very large number of self-assembled co-ordination polymers have been reported, of which many are silver(1) complexes.3-8 Oligobipyridyl ligands have been designed to control the assembly of helicates. So far numerous helical complexes have been reported, including some of silver(I), 5-15 however only a few are double helicates.9-15

Metal helicates are generated when metals combine with ligands containing appropriate metallophilic and helical elements. Many different spacers, such as the ethylene group, have been used to link oligopyridyl or other multidentate entities. 16 The use of aromatic ligand backbones, such as 1,4- and 1,3phenylene groups, as spacers for generation of single- and double-stranded transition metal helicates, respectively, is another approach previously suggested by Constable. 17

We have recently reported a number of silver(I) complexes with different imidazole-containing di-Schiff bases, some of which exhibit helicity; the di-Schiff bases with aliphatic spacers usually form single-stranded helicates with silver(I) salts. We expect that the 1,3-phenylene spacer is superior to aliphatic ones in the formation of double-stranded helical structures due to the lower rotational freedom imposed on the ligands. As a continuation of our studies on silver(I)-Schiff base complexes, we now report two new Schiff bases with 1,3-phenylene (L) or 1,4-phenylene spacers (L') and the structures of their silver(I) complexes. Our results show that different counter ions do not control the assembly of the double-stranded helical silver(I) complexes containing L, however they can influence the assembly of silver(I) complexes with L'.

# **Experimental**

### Materials and physical measurements

Reagents and solvents were used as commercially available. The C. H and N elemental analyses were carried out with a Perkin-Elmer 240Q elemental analyser. The cyclic voltammograms were measured on an electrochemical analyser over 2.0 to -2.0 V at room temperature, with a sample concentration of  $1.0 \times 10^{-4}$  mmol cm<sup>-3</sup> in MeCN solution containing Bu<sup>n</sup><sub>4</sub>NPF<sub>6</sub> (0.1 mmol cm<sup>-3</sup>) and a scan speed of 100 mV s<sup>-1</sup>. A platinum wire working electrode, platinum plate auxiliary electrode and saturated calomel electrode (SCE) reference electrode were employed. All potentials were measured with respect to the SCE and the experiments were carried out at ca. 20 °C. The FAB mass spectra were recorded on a VG ZAB-HS Autospectrophotometer, using 3-nitrobenzyl alcohol as matrix. The 500 MHz <sup>1</sup>H NMR spectra were measured in CD<sub>3</sub>CN solution on an INOVA 500NB spectrometer with reference to internal SiMe<sub>4</sub>.

**CAUTION**: although no problems were encountered in the preparation of the perchlorate salt, care should be taken when handing such a potentially explosive compound.

# **Preparations**

L and L'. L (or L') was prepared by the [1 + 2] condensation of terephthalaldehyde (or isophthalaldehyde) with 2-(aminoethylamino)ethanol in methanol at room temperature according to the literature procedure, <sup>18</sup> and further isolation was not carried out.

[Ag<sub>2</sub>L<sub>2</sub>][ClO<sub>4</sub>]<sub>2</sub> 1. A solution of AgNO<sub>3</sub> (0.17 g, 1 mmol) in MeCN (5 cm<sup>3</sup>) was added to a stirred MeOH (2 cm<sup>3</sup>) solution containing 1 mmol of L. A few minutes later NaClO<sub>4</sub> (0.2 g) in MeOH (0.5 cm<sup>3</sup>) was added dropwise. Slow diffusion of diethyl ether into the resulting solution for 24 h produced colourless crystals, which were collected by filtration, washed with MeCN and MeOH and dried in a vacuum desiccator over silica gel (yield 0.473 g, 92%). Calc. for  $C_{16}H_{26}AgClN_4O_6$ : C, 37.41; H, 5.10; N, 10.91%. Found: C, 37.01; H, 5.02; N, 11.10%.

[Ag<sub>2</sub>L<sub>2</sub>][PF<sub>6</sub>]<sub>2</sub>·H<sub>2</sub>O 2. A solution of AgNO<sub>3</sub> (0.17 g, 1 mmol) in MeCN (5 cm<sup>3</sup>) was added to a stirred solution of L (1 mmol) in MeOH (2 cm<sup>3</sup>). A few minutes later NaPF<sub>6</sub> (0.2 g) in MeOH (1.0 cm<sup>3</sup>) was added dropwise. Treatment as above produced colourless crystals (yield 0.507 g, 90%). Calc. for C<sub>34</sub>H<sub>57</sub>-Ag<sub>2</sub>F<sub>12</sub>N<sub>8</sub>O<sub>5</sub>P<sub>2</sub>: C, 35.10; H, 4.94; N, 9.63%. Found: C, 34.88; H, 4.98; N, 9.55%.

**AgL(NO<sub>3</sub>) 3.** A solution of AgNO<sub>3</sub> (0.17 g, 1 mmol) in MeCN (5 cm<sup>3</sup>) was added to a stirred solution of L (1 mmol) in MeOH (2 cm<sup>3</sup>). Treatment as above produced colourless crystals. Owing to its good solubility in MeCN, complex **3** was only obtained in quite low yield (0.095 g, 10%). Calc. for  $C_8H_{26}AgN_5O_5$ : C, 25.27; H, 6.89; N, 18.42%. Found: C, 25.19; H, 7.01; N, 18.25%.

 ${}^1_{\rm s} [({\rm AgL'})({\rm dnb})({\rm H_2O})_{0.25}]$  **4.** A solution of L' (1 mmol) in MeOH (2 cm³) was added to a stirred suspension of silver(1) 3,5-dinitrobenzoate Ag(dnb) (0.32 g, 1 mmol) in MeCN (5 cm³) and Ag(dnb) immediately dissolved. Upon slow diffusion of diethyl ether into the resulting solution for 24 h, pale brown crystals were deposited. They were collected by filtration, washed with MeCN and MeOH and dried in a vacuum desiccator over silica gel. The yield was 163 g, 26%. Calc. for  $C_{23}H_{29.5}AgN_6O_{8.25}$ : C, 43.86; H, 4.72; N, 13.34%. Found: C, 43.55; H, 4.69; N, 13.26%.

 $^1$ [(AgL')(NO<sub>3</sub>)] 5. This was prepared by a similar procedure to that described for complex 3, with L' instead of L. The yield was 73%. Calc. for  $C_8H_{13}AgN_3O_4$ : C, 29.74; H, 4.06; N, 13.01%. Found: C, 30.00; H, 4.01; N, 12.93%.

<sup>1</sup>H NMR spectra of complexes **1**, **2** and **3** are virtually identical within experimental errors:  $\delta$  2.66–2.68 (8 H, t), 2.90–2.92 (8 H, t, H<sub>2</sub>CNCH<sub>2</sub>), 3.54–3.56 (8 H, t, =NCH<sub>2</sub>) and 3.72–3.74 (8 H, t, OCH<sub>2</sub>). For **4**:  $\delta$  2.67–2.69 (8H, t), 2.90–2.92 (8H, t, H<sub>2</sub>CNCH<sub>2</sub>), 3.54–3.56 (8H, t, =NCH<sub>2</sub>) and 3.74–3.76 (8H, t, OCH<sub>2</sub>). Complex **5** has too weak <sup>1</sup>H NMR signals to be detected because of its insolubility in common organic solvents.

# X-Ray crystallography

Diffraction intensities for complexes 1, 2, 4 and 5 were collected on a Siemens R3m diffractometer using Mo-K $\alpha$  radiation ( $\lambda$  = 0.71073 Å). Lorentz-polarisation and absorption corrections were applied. The structure solutions and full-matrix least-squares refinements based on  $F^2$  were performed with the SHELXS 97 and SHELXL 97 program packages, respectively. All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms of organic groups were generated geometrically and those of the aqua ligands located from the difference maps; all the hydrogen atoms were assigned isotropic thermal parameters and included in the structure-factor calculations. The two-fold disordered nitrate ions were refined with geometric restraints. Analytical expressions of neutral-atom scattering factors were employed, and anomalous dispersion corrections were incorporated. The crystallographic data are

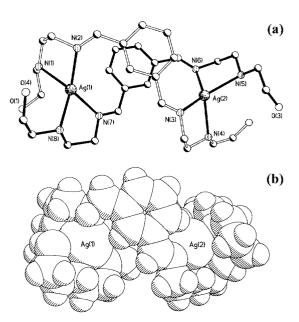



Fig. 1 Perspective (a) and space-filling (b) views of the helicate in complex  ${\bf 1}$ .

summarised in Table 1. Selected bond distances and bond angles are given in Table 2.

CCDC reference number 186/2185.

See http://www.rsc.org/suppdata/dt/b0/b005228k/ for crystallographic files in .cif format.

# **Results and discussion**

#### Crystal structures of complexes 1 and 2

The crystal structures of [Ag<sub>2</sub>L<sub>2</sub>][ClO<sub>4</sub>]<sub>2</sub> 1 and [Ag<sub>2</sub>L<sub>2</sub>][PF<sub>6</sub>]<sub>2</sub>.  $H_2O$  2 reveal that the complexes exist as discrete  $[Ag_2L_2]^{2+}$ cations and counter anions in the solid. In the cation of 1 each ligand binds two Ag atoms in a bis-bidentate co-ordination mode, and forms the strand of the helix that twists around the helical axis on which the Ag atoms lie, as shown in Fig. 1. The pair of metal atoms are separated at 7.426(1) Å. Each Ag atom is tetrahedrally co-ordinated (Ag-N 2.298(6)-2.456(7) Å) by two bidentate chelate imine-amine entities from different L ligands, and the tetrahedron is severely distorted, as a result of the double chelate, with the intraligand N-Ag-N angles in the range 74.7(2) to 75.8(2)° and interligand N–Ag–N angles in the range 122.0(2) to 145.7(2)°. The average Ag–N distances (2.374 Å for 1 and 2.363 Å for 2) are shorter than those (ca. 2.426 Å) found in oligobipyridyl silver(I) complexes. 13 The mean intraligand N-Ag-N angles (75.3° for both 1 and 2) are comparable to those (75.8°) in the silver(I) complexes of ethylenediamine.<sup>23</sup> Although not shown, the double helicate in complex 2 has a very similar crystal structure to that in 1 with some minor geometric differences, as compared in Table 2. The metal-metal separation in complex 2 is 7.408(1) Å.

It is also noteworthy that  $\pi$ – $\pi$  stacking interaction <sup>24</sup> between the pair of aromatic rings from two strands in the helicate plays an important role in stabilising the double-helical geometry, which is similar to those found for oligopyridyl silver(I) complexes. The pair of aromatic rings is aligned in a slightly off-set fashion, being approximately parallel to each other with dihedral angles of 18.1 and 10.4°, and the interplanar distances are 3.81 and 3.53 Å for complexes 1 and 2, respectively.

# Crystal structure of complex 4

Crystallography has established that complex  $\bf 4$  is composed of infinite one-dimensional chains, discrete carboxylates and lattice water molecules. There are two non-equivalent Ag atoms in the polymeric chain, each co-ordinated by two bridging  $\bf L'$ 

|                                         | 1                                                                                              | 2                                                                                                            | 4                                                                    | 5                                                              |
|-----------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|
| <br>Chemical formula                    | C <sub>32</sub> H <sub>52</sub> Ag <sub>2</sub> Cl <sub>2</sub> N <sub>8</sub> O <sub>12</sub> | C <sub>34</sub> H <sub>57</sub> Ag <sub>2</sub> F <sub>12</sub> N <sub>8</sub> O <sub>5</sub> P <sub>2</sub> | C <sub>23</sub> H <sub>29.5</sub> AgN <sub>6</sub> O <sub>8.25</sub> | C <sub>8</sub> H <sub>13</sub> AgN <sub>3</sub> O <sub>4</sub> |
| M                                       | 1027.46                                                                                        | 1127.50                                                                                                      | 629.90                                                               | 323.08                                                         |
| Crystal symmetry                        | Monoclinic                                                                                     | Monoclinic                                                                                                   | Triclinic                                                            | Monoclinic                                                     |
| Space group                             | $P2_1/c$                                                                                       | C2/c                                                                                                         | $P\bar{1}$                                                           | $P2_1/n$                                                       |
| a/Å                                     | 15.651(4)                                                                                      | 28.884(2)                                                                                                    | 12.429(2)                                                            | 5.9580(10)                                                     |
| b/Å                                     | 14.455(4)                                                                                      | 15.4220(1)                                                                                                   | 13.367(3)                                                            | 13.909(4)                                                      |
| c/Å                                     | 20.466(4)                                                                                      | 20.1870(10)                                                                                                  | 17.158(3)                                                            | 14.576(7)                                                      |
| a/°                                     |                                                                                                | . ,                                                                                                          | 81.75(1)                                                             |                                                                |
| βſ°                                     | 110.88(1)                                                                                      | 90.310(4)                                                                                                    | 77.53(1)                                                             | 90.75(2)                                                       |
| γ <b>/</b> °                            |                                                                                                |                                                                                                              | 78.70(1)                                                             |                                                                |
| $V/Å^3$                                 | 4326.1(18)                                                                                     | 8992.1(10)                                                                                                   | 2714.1(9)                                                            | 1207.8(7)                                                      |
| Z                                       | 4                                                                                              | 8                                                                                                            | 8                                                                    | 4                                                              |
| T/K                                     | 293                                                                                            | 293                                                                                                          | 293                                                                  | 293                                                            |
| $\mu(\text{Mo-K}\alpha)/\text{mm}^{-1}$ | 1.093                                                                                          | 1.038                                                                                                        | 0.800                                                                | 1.672                                                          |
| No. measured data                       | 6795                                                                                           | 7262                                                                                                         | 9460                                                                 | 2108                                                           |
| No. observed data                       | 3554                                                                                           | 4977                                                                                                         | 4891                                                                 | 1261                                                           |
| $R1 \ (I > 2\sigma(I))$                 | 0.0664                                                                                         | 0.0722                                                                                                       | 0.0690                                                               | 0.0728                                                         |
| wR2 (all data)                          | 0.1401                                                                                         | 0.2249                                                                                                       | 0.1476                                                               | 0.1270                                                         |

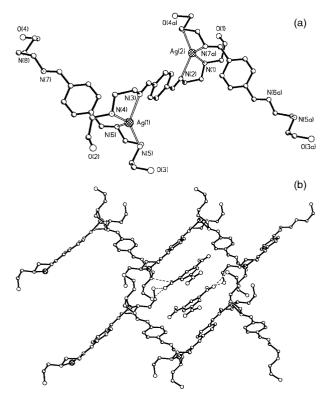



Fig. 2 Perspective views showing the co-ordination environments (a) and part of the two-dimensional layer (b) in complex 4.

ligands through four nitrogen atoms (Ag-N 2.259(5)-2.444(5) Å) to form a severely distorted tetrahedral geometry, as illustrated in Fig. 2. The distortion of the co-ordination, with the intraligand N-Ag-N angles in the range 76.9(2)-77.4(2)° and interligand N-Ag-N angles in the range 114.2(2)-140.2(2)°, is also attributed to the bidentate chelate mode of the L' ligands. The Ag-N bonds are comparable to those found in 1 and 2 and in other Schiff base-containing complexes.<sup>8,25</sup> On the other hand, all the bond distances between Ag atoms and imine nitrogen atoms are longer than those between Ag atoms and amine nitrogen atoms, which contrasts to the situation in other silver(I) complexes reported in this paper and in the literature.<sup>25</sup> The separation (9.758(2) Å) between adjacent Ag atoms in the helical chain of 4 is much longer than the intramolecular  $Ag \cdots Ag$  distances in both 1 and 2, which may be ascribed to the single-stranded structure in complex 4 as compared to the double-stranded structures in 1 and 2, as well as to the geometric difference between the 1,3- and 1,4-phenylene spacers.

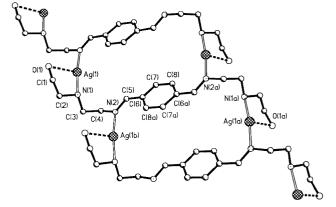



Fig. 3 Perspective view of the structural subunits of the staircase-like  ${}^{1}_{\alpha}[AgL']$  chain in complex 5.

Finally, it should be mentioned that adjacent helical chains are arranged into two-dimensional networks containing rhombic cavities in the solid as shown in Fig. 2(b), in each of which two carboxylate anions are clathrated. The carboxylates are aligned in parallel with each other and with the 1,4-phenylene groups of the helical chains, featuring offset  $\pi$ - $\pi$  stacking interactions with the interplanar distance between the two carboxylates and those between the carboxylate and the phenylene group being ca. 3.4 and 3.6 Å, respectively. Hydrogen bonds between the hydroxyl and carboxylate (or nitro) groups  $(O \cdots O 2.67-2.77 \text{ Å})$  as well as those between the amine and carboxylate groups  $(N \cdots O 2.86-2.94 \text{ Å})$  also play a role in consolidating the network structure.

#### Crystal structure of complex 5

The structure of complex 5 consists of polymeric cationic chains composed of [AgL']<sup>+</sup> units and unco-ordinated nitrate anions. As shown in Fig. 3, each Ag atom in the cationic chain is linearly co-ordinated by one amine and one imine nitrogen atom from different L' ligands with the N-Ag-N angle of 172.5(3)°. It is notable that each amine/imine bidentate entity in the L' ligand ligates two Ag atoms, different from the usual chelate mode found in complexes 1 and 2. Such a bridging mode for a diimine-like bidentate entity is quite unusual, and has very recently been documented in our previous work.<sup>8</sup> Both  $Ag-N_{amine}$  (2.197(7) Å) and  $Ag-N_{imine}$  (2.159(6) Å) bond lengths are reasonable and comparable with those found in related complexes.<sup>25</sup> Each hydroxyl oxygen atom of the L' ligand occupies the third co-ordination position of an Ag atom in the form of weak interaction (Ag-O 2.65(1) Å). Two Ag atoms and two L' ligands constitute a 24-membered macrocycle with size

**Table 2** Selected bond lengths (Å) and bond angles (°) for complexes **1. 2. 4** and **5** 

| 1, 2, 4 and 3                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|-------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1                                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Ag(1)-N(2)                                            | 2.298(6)            | Ag(1)-N(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.313(5) |
| Ag(1)-N(7)                                            | 2.430(6)            | Ag(1)-N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.456(7) |
| Ag(2)-N(3)                                            | 2.335(6)            | Ag(2)-N(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.366(6) |
| Ag(2)-N(6)                                            | 2.369(6)            | Ag(2)-N(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.391(6) |
| 5()                                                   | (.)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (.)      |
| N(8)-Ag(1)-N(7)                                       | 74.7(2)             | N(2)-Ag(1)-N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.5(2)  |
| N(5)-Ag(2)-N(6)                                       | 75.7(2)             | N(3)-Ag(2)-N(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.8(2)  |
| N(2)-Ag(1)-N(8)                                       | 145.7(2)            | N(2)-Ag(1)-N(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128.5(2) |
| N(8)– $Ag(1)$ – $N(1)$                                | 116.4(2)            | N(7)– $Ag(1)$ – $N(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122.0(2) |
| N(3)-Ag(2)-N(5)                                       | 140.7(2)            | N(3)-Ag(2)-N(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132.4(2) |
| N(5)-Ag(2)-N(4)                                       | 112.5(2)            | N(6)-Ag(2)-N(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125.7(2) |
| 1 <b>(</b> (3)=1 <b>g</b> (2)=1 <b>(</b> ( <b>1</b> ) | 112.3(2)            | 14(0)=Ag(2)=14(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123.7(2) |
| 2                                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Ag(1)-N(7)                                            | 2.353(7)            | Ag(1)-N(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.352(6) |
| Ag(1)–N(4)                                            | 2.356(6)            | Ag(1)-N(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.357(7) |
| Ag(2)-N(6)                                            | 2.235(6)            | Ag(2)-N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.295(7) |
| Ag(2)-N(5)                                            | 2.443(6)            | Ag(2)-N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.511(7) |
| Ag(2)-14(3)                                           | 2.443(0)            | Ag(2)=I(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.311(7) |
| N(3)-Ag(1)-N(4)                                       | 77.4(2)             | N(7)-Ag(1)-N(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.5(3)  |
| N(1)-Ag(2)-N(2)                                       | 73.8(2)             | N(6)-Ag(2)-N(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.7(2)  |
| N(7)– $Ag(1)$ – $N(3)$                                | 127.3(2)            | N(7)-Ag(1)-N(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125.3(2) |
| N(3)-Ag(1)-N(8)                                       | 137.8(2)            | N(4)-Ag(1)-N(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.6(2) |
| N(6)-Ag(2)-N(1)                                       | 152.0(2)            | N(6)-Ag(2)-N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125.2(2) |
| N(1)-Ag(2)-N(5)                                       | 115.7(2)            | N(5)-Ag(2)-N(2)<br>N(5)-Ag(2)-N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.0(2) |
| 1 <b>v</b> (1)=Ag(2)=1 <b>v</b> (3)                   | 113.7(2)            | IV(3) = IV(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 114.0(2) |
| 4                                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Ag(1)-N(5)                                            | 2.259(5)            | Ag(1)-N(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.304(4) |
| Ag(1)-N(3)                                            | 2.389(4)            | Ag(1)-N(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.632(6) |
| Ag(2)-N(8a)                                           | 2.258(4)            | Ag(2)-N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.294(4) |
| Ag(2)-N(2)                                            | 2.444(5)            | Ag(2)-N(7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.644(6) |
| 118(2) 11(2)                                          | 2(0)                | 11g(2) 11(74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0(0)   |
| N(5)-Ag(1)-N(4)                                       | 139.6(2)            | N(5)-Ag(1)-N(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 135.3(2) |
| N(4)-Ag(1)-N(3)                                       | 77.4(2)             | N(5)-Ag(1)-N(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.8(2)  |
| N(4)– $Ag(1)$ – $N(6)$                                | 123.4(2)            | N(3)-Ag(1)-N(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114.2(2) |
| N(8a)-Ag(2)-N(1)                                      | 140.2(2)            | N(8a)-Ag(2)-N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133.7(2) |
| N(1)-Ag(2)-N(2)                                       | 76.9(2)             | N(8a)-Ag(2)-N(7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.6(2)  |
| N(1)-Ag(2)-N(7a)                                      | 125.2(2)            | N(2)-Ag(2)-N(7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115.2(2) |
| 1 <b>v</b> (1)=Ag(2)=1 <b>v</b> (7a)                  | 123.2(2)            | IV(2) = IV(7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113.2(2) |
| 5                                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Ag(1)-N(1)                                            | 2.197(7)            | Ag(1)-N(2b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.159(6) |
| Ag(1)–O(1)                                            | 2.65(1)             | 5() (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (*)      |
| 2                                                     | . /                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| N(2b)-Ag(1)-N(1)                                      | 172.5(3)            | N(2b)-Ag(1)-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.1(3) |
| N(1)-Ag(1)-O(1)                                       | 74.9(3)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Symmetry codes: for                                   | (A (a) = x = y)     | z, $-z$ ; for <b>5</b> , (b) $-1 + x$ , $y$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7        |
| Symmetry codes: 101                                   | -x, (a) $-x$ , $-y$ | $\frac{1}{2}$ , | ۷.       |

ca.  $5 \times 10$  Å, and the inter-linkage of the L' ligand with Ag atoms results in infinite staircase-like chains, as illustrated in Fig. 3. All the phenylene rings in each chain are exactly parallel. The disordered nitrate anions form acceptor hydrogen bonds  $(O \cdots N 2.84 \text{ Å})$  with the amine nitrogen atoms.

# MS and <sup>1</sup>H NMR spectra

The FAB mass spectra provide evidence of the existence of  $[Ag_2L_2]^{2+}$  double helicates of complexes 1, 2 and 3. The most abundant ions in 4-nitrobenzyl alcohol solution are the  $[Ag_2L_2]^{2+}$  (m/z=413, 415, relative abundance 100 and 82%), and the abundance of the "free" ligand  $L^+$  (m/z=307) is nearly 99%. The FAB mass spectrum of 4 displays similar patterns to those of the former complexes, and has peaks at m/z 413, 415 and 307 (relative abundances 97, 80 and 100%) due to  $[AgL']^+$  and  $L'^+$ , respectively, in accord with the crystal structures.

The identical <sup>1</sup>H NMR spectra of complexes **1**, **2** and **3** in DMSO- $d_6$  solution indicate very similar structures in solution, although the crystal structures are slightly different in detail. The signals of aliphatic protons occur in the region  $\delta$  2.66–3.74. The signals of the aromatic protons are well resolved, in the region  $\delta$  7.37–8.52. The splittings of the signals of the aromatic protons of **1–3** at ca.  $\delta$  7.64 may be attributed to the intramolecular  $\pi$ – $\pi$  stacking interaction. <sup>14,26</sup> The <sup>1</sup>H NMR spectrum

Table 3 CV data for complexes 1, 2, 3 in MeCN at room temperature

| Complex | $E_{\rm pc1}/{ m V}$  | $E_{\rm pc2}$ /V | $E_{\rm pc3}/{ m V}$ | $E_{\rm pa1}/{ m V}$ | $E_{\rm pa2}/{ m V}$ |
|---------|-----------------------|------------------|----------------------|----------------------|----------------------|
| 1       | -0.08 $-0.08$ $-0.08$ | -0.24            | -1.10                | +0.35                | +1.15                |
| 2       |                       | -0.26            | -1.13                | +0.34                | +1.15                |
| 3       |                       | -0.24            | -1.14                | +0.35                | +1.17                |

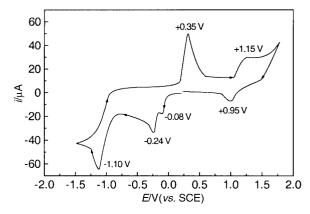



Fig. 4 Cyclic voltammogram of complex 1 in MeCN at room temperature with 0.1 mmol cm $^{-3}$  of Et<sub>4</sub>NClO<sub>4</sub> as electrolyte at a platinum electrode with a SCE as reference. Conditions:  $1.0 \times 10^{-4}$  mol L $^{-1}$ , v = 100 mV s $^{-1}$ .

of complex 4 in DMSO- $d_6$  solution is very similar to those of 1–3 in the aliphatic region  $\delta$  2.67–3.76. However, the signals of the aromatic protons ( $\delta$  7.65–7.67) are complicated and are significantly different from those of 1–3.

### Electrochemistry

Complexes 1, 2 and 3 underwent overall cyclic voltammetry (CV) processes in CH<sub>3</sub>CN containing Et<sub>4</sub>NClO<sub>4</sub> (0.1 mmol cm<sup>-3</sup>) in the range 2.0 to -2.0 V at room temperature starting with reduction, and the data are summarised in Table 3. The electrochemical behaviours of 2 and 3 are quite similar to that of 1, which is shown in Fig. 4. The cathodic waves occur with reduction peaks at about -0.08 and -0.24 V, which indicate the formation of two valence states  $[Ag^{I}Ag^{0}L_{2}]^{+}$  and  $[Ag^{0}Ag^{0}L_{2}]$ respectively. The number of electrons consumed at each step was confirmed to be one as the peak current ratio of the cathodic waves was about 1:1. The irreversible cathodic wave is at about -1.10 V and gas was evolved upon reduction due to decomposition of the complexes and then  $2L + 4e \longrightarrow$  $2L^{-} + 2H_{2}^{-25}$  The anodic wave at about +0.35 V has been confirmed by comparing it with the standard oxidation potential of Ag-Ag<sup>+</sup> in MeCN (+0.23 V vs. SCE). The potential shift of 0.12 V indicates that co-ordination of the N<sub>4</sub>O<sub>2</sub> donor set significantly stabilises the Ag<sup>0</sup> in these complexes. Since the peak current ratio of the cathodic wave at -0.08 V and the anodic wave at +0.35 V was about 1:2, the anodic wave is probably caused by the one-step oxidation reaction  $[Ag^0Ag^0L_2] - 2e \longrightarrow$  $[Ag^{I}Ag^{I}L_{2}]^{2+}$ . The pseudo-reversible redox couple at +1.15/+0.95 V (see Fig. 4) has been confirmed to be  $[Ag^{II}Ag^{II}L_2]^{4+}$  +  $2e \longrightarrow [Ag^IAg^IL_2]^{2+}$  by comparing it with the standard oxidation potential of  $Ag^+-Ag^{2+}$ . The electrochemical process may be expressed as in Scheme 1. These observations suggest that the ligand can stabilise the silver(I) ions in the complexes.

#### **Discussion**

Based on the literature and our previous work, <sup>6,8</sup> we designed two new, readily prepared di-Schiff base ligands, L and L'. The structure of L enables it to form double-stranded silver(I) helicates easily, independent of the counter ions, in contrast to the fact that silver(I) complexes and co-ordination polymers are

$$[Ag^{II}Ag^{II}L_{2}]^{4+} \xrightarrow{\frac{+2e,\ +0.95\ V}{-2e,\ +1.15\ V}} [Ag^{I}Ag^{I}L_{2}]^{2+} \xrightarrow{\frac{+e}{-0.08\ V}} [Ag^{I}Ag^{0}L_{2}]^{+} \xrightarrow{\frac{+e}{-0.24\ V}} [Ag^{0}Ag^{0}L_{2}] \xrightarrow{\frac{+2e}{-1.10\ V}} 2Ag + 2L^{2-} + 2H_{2}$$

#### Scheme 1

easily influenced by the counter ions. 4,6,25 On the other hand, with a 1,4- instead of a 1,3-phenylene group, L' behaves markedly differently in the assembly process, generating silver(I) complexes with different structures dependent on the counter ions and the  $\pi$ - $\pi$  stacking interaction. Based on current results, we may suggest that the helicity of silver(I) complexes may be controlled by the phenylene spacer of the ligand, and a 1,3phenylene spacer is superior in the formation of doublestranded helical structures. Finally, the two hydroxyl groups in L, which are first introduced into the ends of a dinucleating helical strand, greatly increase the solubility of the double helicates in various polar solvents including water.

# Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (No. 29971033 and 29625102). We thank the Chemistry Department of the Chinese University of Hong Kong for donation of the diffractometer.

### References

- 1 A. Klug, Angew. Chem., Int. Ed. Engl., 1983, 22, 565.
- 2 J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89; T. M. Garrett, U. Koert, J.-M. Lehn, A. Rigault, D. Meyer and J. Fischer, J. Chem. Soc., Chem. Commun., 1990, 557.
- 3 L. Carlucci, G. Ciani, D. M. Proserpio and A. Sironi, J. Am. Chem. Soc., 1995, 117, 4562; L. Carlucci, G. Ciani, D. W. V. Gudenberg, D. M. Proserpio and A. Sironi, Chem. Commun., 1997, 631; K. A. Hirsch, S. R. Wilson and J. S. Moore, Chem. Commun., 1998, 13; K. A. Hirsch, S. R. Wilson and J. S. Moore, Chem. Eur. J., 1997, 3, 765; A. J. Blake, N. R. Champness, A. Khlobystov, D. A. Lemenovskii, W.-S. Li and M. Schröder, Chem. Commun., 1997, 2027; J. A. R. Navarro, J. M. Salas, M. A. Romero and R. Faure, J. Chem. Soc., Dalton Trans., 1998, 901; C. B. Aakeröy and A. M. Beatty, Chem. Commun., 1998, 1067; C. Janiak, T. G. Scharman, P. Albrecht, F. Marlow and R. Macdonald, J. Am. Chem. Soc., 1996, 118, 6307; M.-L. Tong, X.-M. Chen, B.-H. Ye and L.-N. Ji, Angew. Chem., Int. Ed., 1999, 38, 2237; M.-L. Tong, S.-L. Zheng and X.-M. Chen, Chem. Commun., 1999, 561
- 4 H.-P. Wu, C. Janiak, G. Rheinwald and H. Liang, J. Chem. Soc., Dalton Trans., 1999, 183; C. Janiak, L. Uchlin, H.-P. Wu, P. Klufers,

- H. Piotrowski and T. G. Scharman, J. Chem. Soc., Dalton Trans., 1999, 3121; M.-L. Tong, S.-L. Zheng and X.-M. Chen, Chem. Eur. J., 2000, 6, 3729.
- 5 M. Munakata, L. P. Wu and T. Kuroda-Sowa, Adv. Inorg. Chem., 1999, 46, 173 and references therein.
- 6 M.-L. Tong, X.-M. Chen, B.-H. Ye and S. W. Ng, Inorg. Chem., 1998, 37, 5278; G. Yang, S.-L. Zheng and X.-M. Chen, *Inorg. Chim.* Acta, 2000, 233, 86.
- 7 P. K. Bowyer, K. A. Porter, A. D. Rae, A. C. Willis and S. B. Wild, Chem. Commun., 1998, 1153.
- 8 S.-P. Yang, X.-M. Chen and L.-N. Ji, J. Chem. Soc., Dalton Trans., 2000, 2337; S.-P. Yang, H.-L. Zhu, X.-H. Yin, X.-M. Chen and L.-N. Ji, Polyhedron, 2000, 19, in press.
- 9 E. C. Constable, S. M. Elder, M. J. Hannon, A. Martin, P. R. Raithby and D. A. Tocher, J. Chem. Soc., Dalton Trans., 1996, 2423.
- 10 E. C. Constable, M. J. Hannon, A. Martin, P. R. Raithby and D. A. Tocher, Polyhedron, 1992, 11, 2967.
- 11 E. C. Constable, J. M. Holmes and P. R. Raithby, Polyhedron, 1991, 10, 127.
- 12 E. C. Constable, A. J. Edwards, P. R. Raithby and J. V. Walker, Angew. Chem., Int. Ed. Engl., 1993, 32, 1465.
- Y. Fu, J. Sun, Q. Li, Y. Chen, W. Dai, D. Wang, T. C. W. Mak, W. Tang and H. Hu, J. Chem. Soc., Dalton Trans., 1996, 2309.
- 14 P. K.-K. Ho, S. M. Peng, K.-Y. Wong and C.-M. Che, J. Chem. Soc., Dalton Trans., 1996, 1829.
- 15 M. J. Hannon, C. L. Painting and N. W. Alcock, Chem. Commun., 1999, 2023.
- 16 V. Balzani, Tetrahedron, 1992, 48, 10443.
- 17 E. C. Constable, Tetrahedron, 1992, 48, 10013.
- 18 R. Menif and A. E. Martell, J. Chem. Soc., Chem. Commun., 1989,
- 1521; D. Chen and A. E. Martell, *Tetrahedron*, 1991, 47, 6895.
  19 A. C. T. North, D. C. Phillips and F. S. Mathews, *Acta Crystallogr.*, Sect. A, 1968, 24, 351
- 20 G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Determination, University of Göttingen, 1997.
- G. M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, 1997.
- 22 International Tables for Crystallography, Kluwer Academic Publishers, Dordrecht, 1992, vol. C, Tables 4.2.6.8 and 6.1.1.4.
- 23 E. Bang, Acta Chem. Scand., Ser. A, 1978, 32, 555.
- C. A. Hunter and J. K. Sanders, J. Am. Chem. Soc., 1990, 112, 5525; C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885.
- 25 H.-L. Zhu, Y.-X. Tong, L.-S. Long, M.-L. Tong and X.-M. Chen, Supramol. Chem., 1999, 11, 119.
- 26 M.-L. Tong, B.-H. Ye, J.-W. Cai, X.-M. Chen and S. W. Ng, Inorg. Chem., 1998, 37, 2645.